
Bash Features
Cursory Documentation for Bash

Brian Fox, Free Software Foundation

Copyright c© 1991 Free Software Foundation, Inc.

Chapter 1: Bourne Shell Style Features 1

1 Bourne Shell Style Features

Bash is an acronym for Bourne Again SHell, the traditional Unix shell written by Stephen

Bourne. All of the Bourne shell builtin commands are available in Bash, and the rules for evaluation

and quoting are taken from the Posix 1003 specification for the ‘standard’ Unix shell.

The shell builtin control features are briefly discussed here.

1.1 Looping Constructs

Note that whereever you see an ‘;’ in the description of a command’s syntax, it can be replaced

indiscriminently with newlines.

Bash supports the following looping constructs.

until The syntax of the until command is:

until test-commands; do consequent-commands; done

Execute consequent-commands as long as the final command in test-commands has an

exit status which is not zero.

while The syntax of the while command is:

while test-commands; do consequent-commands; done

Execute consequent-commands as long as the final command in test-commands has an

exit status of zero.

for The syntax of the for command is:

for name [in words ...]; do commands; done

Execute commands for each member in words, with name bound to the current member.

If “in words” is not present, “in "$@"” is assumed.

1.2 Conditional Constructs

if The syntax of the if command is:

if test-commands; then
consequent-commands;

[else alternate-consequents;]

2 Bash Features

fi

Execute consequent-commands only if the final command in test-commands has an

exit status of zero. If “else alternate-consequents” is present, and the final command

in test-commands has a non-zero exit status, then execute alternate-consequents.

case The syntax of the case command is:

case word in [pattern [| pattern]...) commands ;;]... esac

Selectively execute commands based upon word matching pattern. The ‘|’ is used to

separate multiple patterns.

Here is an example using case in a script that could be used to describe an interesting

feature of an animal:

echo -n "Enter the name of an animal:"
read ANIMAL
echo -n "The $ANIMAL has "
case $ANIMAL in
horse | dog | cat) echo -n "four";;
man | kangaroo) echo -n "two";;
*) echo -n "an unknown number of";;

esac
echo "legs."

Chapter 2: (T)C-Shell Style Features 3

2 (T)C-Shell Style Features

The C-Shell csh was created by Bill Joy at UC Berkeley. It is generally considered to have

better features for interactive use than the Bourne shell. Some of the csh features present in Bash

include job control, history expansion, ‘protected’ redirection, and several variables for controlling

the interactive behaviour of the shell (e.g. ignoreeof).

For details on history expansion, see Chapter 5 [Using History Interactively], page 15.

Bash has tilde (~) expansion, similar, but not identical, to that of csh. The following table

shows what unquoted words beginning with a tilde expand to.

~ The current value of $HOME.

~/foo $HOME/foo

~fred/foo

The subdirectory foo of the home directory of the user named fred.

~+/foo $PWD/foo

~- $OLDPWD/foo

Here is a list of the commands and variables whose meanings were taken from csh.

pushd

pushd [dir | +n]

Save the current directory on a list and then CD to DIR. With no arguments, exchanges

the top two directories.

+n Brings the nth directory to the top of the list by rotating.

dir Makes the current working directory be the top of the stack, and then cd’s

to DIR. You can see the saved directory list with the ‘dirs’ command.

popd

popd [+n]

Pops the directory stack, and cd’s to the new top directory. The elements are numbered

from 0 starting at the first directory listed with dirs; i.e. popd is equivalent to popd

0.

dirs

dirs

4 Bash Features

Display the list of currently remembered directories. Directories find their way onto

the list with the pushd command; you can get back up through the list with the popd

command.

history

history [n] [[-w -r] [filename]]

Display the history list with line numbers. Lines listed with with a * have been modified.

Argument of n says to list only the last n lines. Argument -w means write out the

current history file. -r means to read it instead. If filename is given, then use that file,

else if $HISTFILE has a value, use that, else use ‘~/.bash_history’.

ignoreeof

If this variable is set, it represents the number of consecutive EOFs Bash will read before

exiting. By default, Bash will exit upon reading an EOF character.

Chapter 3: Korn Shell Style Features 5

3 Korn Shell Style Features

fc

fc [-e ename] [-nlr] [first] [last]
fc -s [pat=rep] [command]

Fix Command. In the first form, a range of commands from first to last is selected

from the history list. First and/or last may be specified as a string (to locate the most

recent command beginning with that string) or as a number (an index into the history

list, where a negative number is used as an offset from the current command number).

If last is not specified it is set to first. If first is not specified it is set to the previous

command for editing and -16 for listing. If the -l flag is given, the commands are

listed on standard output. The -n flag suppresses the command numbers when listing.

The -r flag reverses the order of the listing. Otherwise, the editor given by ename is

invoked on a file containing those commands. If ename is not given, the value of the

following variable expansion is used: ${FCEDIT:-${EDITOR:-vi}. This says to use the

value of the FCEDIT variable if set, or the value of the EDITOR variable if that is set,

or vi if neither is set. When editing is complete, the edited commands are echoed and

executed.

In the second form, command is re-executed after the substitution old=new is per-

formed.

A useful alias to use with the fc command is r=’fc -s’, so that typing r cc runs the

last command beginning with cc and typing r re-executes the last command.

typeset The typeset command is supplied for compatability with the Korn shell, however, it

has been made obsolete by the presence of the declare command, documented with

the Bash specific features.

type Bash’s type command is a superset of the type found in Korn shells; See Section 4.6

[Bash Builtins], page 10 for details.

6 Bash Features

Chapter 4: Bash Specific Features 7

4 Bash Specific Features

4.1 Shell Command Line Options

Along with the single character shell command-line options (See Section 4.2 [The Set Builtin],

page 7) there are several other options that you can use. These options must appear on the

command line before the single character command options to be recognized.

-norc Don’t load ~/.bashrc init file. (Default if shell name is ‘sh’).

-rcfile filename

Load filename init file (instead ‘~/.bashrc’).

-noprofile

Don’t load ‘~/.bash_profile’ (nor ‘/etc/profile’).

-version Display the version number of this shell.

-login Make this shell act as if it were directly invoked from login. This is equivalent to “exec

- bash” but can be issued from another shell, such as csh. If you wanted to replace

your current login shell with a bash login shell, you would say “exec bash -login”.

-nobraceexpansion

Do not preform curly brace expansion (foo{a,b} -> fooa foob).

-nolinediting

Do not use the GNU Readline library to read interactive text lines.

4.2 The Set Builtin

This builtin is so overloaded that it deserves its own section. So here it is.

set

set [-aefhknotuvxldH] [arg ...]

-a Mark variables which are modified or created for export.

-e Exit immediately if a command exits with a non-zero status.

-f Disable file name generation (globbing).

-k All keyword arguments are placed in the environment for a command, not

just those that precede the command name.

-m Job control is enabled.

8 Bash Features

-n Read commands but do not execute them.

-o option-name

Set the variable corresponding to option-name:

allexport

same as -a.

braceexpand

the shell will perform brace expansion.

emacs use an emacs-style line editing interface.

errexit same as -e.

histexpand

same as -H.

ignoreeof

the shell will not exit upon reading EOF.

monitor same as -m.

noclobber

disallow redirection to existing files.

noexec same as -n.

noglob same as -f.

nohash same as -d.

notify notify of job termination immediately.

nounset same as -u.

verbose same as -v.

vi use a vi-style line editing interface.

xtrace same as -x.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-v Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

-l Save and restore the binding of the name in a for command.

-d Disable the hashing of commands that are looked up for execution. Nor-

mally, commands are remembered in a hash table, and once found, do not

have to be looked up again.

-H Enable ! style history substitution. This flag is on by default.

Using ‘+’ rather than ‘-’ causes these flags to be turned off. The flags can also be

used upon invocation of the shell. The current set of flags may be found in $-. The

remaining args are positional parameters and are assigned, in order, to $1, $2, .. $9.

If no args are given, all shell variables are printed.

Chapter 4: Bash Specific Features 9

4.3 Is This Shell Interactive?

You may wish to determine within a startup script whether Bash is running interactively or

not. To do this, you examine the variable $PS1; it is unset in non-interactive shells, and set in

interactive shells. Thus:

if ["$PS1" = ""]; then
echo "This shell is not interactive"

else
echo "This shell is interactive"

fi

You can ask an interactive Bash to not run your ‘~/.bashrc’ file with the -norc flag. You can

change the name of the ‘~/.bashrc’ file to any other file name with -rcfile filename. You can

ask Bash to not run your ‘~/.bash_profile’ file with the -noprofile flag.

4.4 Controlling the Prompt

The value of the variable $PROMPT_COMMAND is examined just before Bash prints each toplevel

prompt. If it is set and non-null, then the value is executed just as if you had typed it on the

command line.

In addition, the following table describes the special characters which can appear in the PS1

variable:

\t the time.

\d the date.

\n CRLF.

\s the name of the shell.

\w the current working directory.

\W the last element of PWD.

\u your username.

\h the hostname.

\# the command number of this command.

\! the history number of this command.

\<octal> the character code in octal.

\\ a backslash.

10 Bash Features

4.5 Bash Startup Files

When and how Bash executes ‘~/.bash_profile’, ‘~/.bashrc’, and ‘~/.bash_logout’.

For Login shells:

On logging in:
If ‘/etc/profile’ exists, then source it.

If ‘~/.bash_profile’ exists, then source it,
else if ‘~/.bash_login’ exists, then source it,

else if ‘~/.profile’ exists, then source it.

On logging out:
If ‘~/.bash_logout’ exists, source it.

For non-login interactive shells:
On starting up:

If ‘~/.bashrc’ exists, then source it.

For non-interactive shells:
On starting up:

If the environment variable ENV is non-null, source the
file mentioned there.

So, typically, your ~/.bash_profile contains the line

if [-f ‘~/.bashrc’]; then source ‘~/.bashrc’; fi

after (or before) any login specific initializations.

4.6 Bash Builtin Commands

builtin

builtin [shell-builtin [args]]

Run a shell builtin. This is useful when you wish to rename a shell builtin to be a

function, but need the functionality of the builtin within the function itself.

declare

declare [-[frxi]] name[=value]

Declare variables and/or give them attributes. If no names are given, then display the

values of variables instead. -f means to use function names only. -r says to make

Chapter 4: Bash Specific Features 11

names readonly. -x says to make names export. -i says that the variable is to be

treated as an integer; arithmetic evaluation (see let) will be done when the variable

is assigned to. Using + instead of - turns off the attribute instead. When used in a

function, makes names local, as with the local command.

type

type [-all] [-type | -path] [name ...]

For each name, indicate how it would be interpreted if used as a command name.

If the -type flag is used, type returns a single word which is one of “alias”, “function”,

“builtin”, “file” or “”, if name is an alias, shell function, shell builtin, disk file, or

unfound, respectively.

If the -path flag is used, type either returns the name of the disk file that would be

exec’ed, or nothing if -type wouldn’t return “file”.

If the -all flag is used, returns all of the places that contain an executable named file.

This includes aliases and functions, if and only if the -path flag is not also used.

enable

enable [-n] [name ...]

Enable and disable builtin shell commands. This allows you to use a disk command

which has the same name as a shell builtin. If -n is used, the names become disabled.

Otherwise names are enabled. For example, to use the test found on your path instead

of the shell builtin version, you type enable -n test.

help

help [pattern]

Display helpful information about builtin commands. If pattern is specified, gives

detailed help on all commands matching pattern, otherwise a list of the builtins is

printed.

command

command [command [args ...]]

Runs command with arg ignoring shell functions. If you have a shell function called

ls, and you wish to call the command ls, you can say “command ls”.

hash

hash [-r] [name]

For each name, the full pathname of the command is determined and remembered.

The -r option causes the shell to forget all remembered locations. If no arguments are

given, information about remembered commands is presented.

local

local name[=value]

12 Bash Features

Create a local variable called name, and give it value. local can only be used within

a function; it makes the variable name have a visible scope restricted to that function

and its children.

readonly

readonly [-f] [name ...]

The given names are marked readonly and the values of these names may not be

changed by subsequent assignment. If the -f option is given, the functions corresponding

to the names are so marked. If no arguments are given, a list of all readonly names is

printed.

ulimit

ulimit [-acdmstfpn [limit]]

Ulimit provides control over the resources available to processes started by the shell,

on systems that allow such control. If an option is given, it is interpreted as follows:

-a all current limits are reported.

-c the maximum size of core files created.

-d the maximum size of a process’s data segment.

-m the maximum resident set size.

-s the maximum stack size.

-t the maximum amount of cpu time in seconds.

-f the maximum size of files created by the shell.

-p the pipe buffer size.

-n the maximum number of open file descriptors.

If limit is given, it is the new value of the specified resource. Otherwise, the current

value of the specified resource is printed. If no option is given, then -f is assumed.

Values are in 1k increments, except for -t, which is in seconds, and -p, which is in

increments of 512 bytes.

4.7 Bash Variables

history_control

Set to a value of "ignorespace", it means don’t enter lines which begin with a SPC on

the history list. Set to a value of "ignoredups", it means don’t enter lines which match

the last entered line. Unset, or any other value than those above mean to save all lines

on the history list.

HISTFILE The name of the file that the command history is saved in.

Chapter 4: Bash Specific Features 13

HISTSIZE If set, this is the maximum number of commands to remember in the history.

histchars

Up to three characters which control history expansion, quick substitution, and to-

kenization. The first character is the history-expansion-char, that is, the character

which signifies the start of a history expansion, normally ‘!’. The second character is

the character which signifies ‘quick substitution’ when seen as the first character on

a line, normally ‘^’. The optional third character is the character which signifies the

remainder of the line is a comment, when found as the first character of a word, usually

‘#’.

hostname_completion_file

Contains the name of a file in the same format as ‘/etc/hosts’ that should be read

when the shell needs to complete a hostname. You can change the file interactively;

the next time you want to complete a hostname Bash will add the contents of the new

file to the already existing database.

MAILCHECK

How often (in seconds) that the shell should check for mail in the file(s) specified in

MAILPATH.

MAILPATH Colon separated list of pathnames to check for mail in. You can also specify what

message is printed by separating the pathname from the message with a ‘?’. $_ stands

for the name of the current mailfile. For example:

MAILPATH=’/usr/spool/mail/bfox?"You have mail":~/shell-mail?"$_ has
mail!"’

ignoreeof

IGNOREEOF

Controls the action of the shell on receipt of an EOF character as the sole input. If set,

then the value of it is the number of EOF characters that can be seen in a row as sole

input characters before the shell will exit. If the variable exists but does not have a

numeric value (or has no value) then the default is 10. if the variable does not exist,

then EOF signifies the end of input to the shell. This is only in effect for interactive

shells.

auto_resume

This variable controls how the shell interacts with the user and job control. If this

variable exists then single word simple commands without redirects are treated as

candidates for resumption of an existing job. There is no ambiguity allowed; if you

have more than one job beginning with the string that you have typed, then the most

recently accessed job will be selected.

no_exit_on_failed_exec

If this variable exists, the shell will not exit in the case that it couldn’t execute the file

specified in the exec command.

14 Bash Features

PROMPT_COMMAND

If present, this contains a string which is a command to execute before the printing of

each toplevel prompt.

nolinks If present, says not to follow symbolic links when doing commands that change the

current working directory. By default, bash follows the logical chain of directories

when performing cd type commands.

For example, if ‘/usr/sys’ is a link to ‘/usr/local/sys’ then:

cd /usr/sys; echo $PWD -> /usr/sys
cd ..; pwd -> /usr

If nolinks exists, then:

cd /usr/sys; echo $PWD -> /usr/local/sys
cd ..; pwd -> /usr/local

Chapter 5: Using History Interactively 15

5 Using History Interactively

This chapter describes how to use the GNU History Library interactively, from a user’s stand-

point. It should be considered a user’s guide. For information on using the GNU History Library

in your own programs, see 〈undefined〉 [Programming with GNU History], page 〈undefined〉.

5.1 History Interaction

The History library provides a history expansion feature that is similar to the history expansion

in Csh. The following text describes the sytax that you use to manipulate the history information.

History expansion takes place in two parts. The first is to determine which line from the

previous history should be used during substitution. The second is to select portions of that line

for inclusion into the current one. The line selected from the previous history is called the event,

and the portions of that line that are acted upon are called words. The line is broken into words

in the same fashion that the Bash shell does, so that several English (or Unix) words surrounded

by quotes are considered as one word.

5.1.1 Event Designators

An event designator is a reference to a command line entry in the history list.

! Start a history subsititution, except when followed by a space, tab, or the end of the

line... = or (.

!! Refer to the previous command. This is a synonym for !-1.

!n Refer to command line n.

!-n Refer to the command line n lines back.

!string Refer to the most recent command starting with string.

!?string[?]

Refer to the most recent command containing string.

5.1.2 Word Designators

A : separates the event specification from the word designator. It can be omitted if the word

16 Bash Features

designator begins with a ^, $, * or %. Words are numbered from the beginning of the line, with the

first word being denoted by a 0 (zero).

0 (zero) The zero’th word. For many applications, this is the command word.

n The n’th word.

^ The first argument. that is, word 1.

$ The last argument.

% The word matched by the most recent ?string? search.

x-y A range of words; -y Abbreviates 0-y .

* All of the words, excepting the zero’th. This is a synonym for 1-$. It is not an error to

use * if there is just one word in the event. The empty string is returned in that case.

5.1.3 Modifiers

After the optional word designator, you can add a sequence of one or more of the following

modifiers, each preceded by a :.

The entire command line typed so far. This means the current command, not the

previous command, so it really isn’t a word designator, and doesn’t belong in this

section.

h Remove a trailing pathname component, leaving only the head.

r Remove a trailing suffix of the form ‘.’suffix, leaving the basename.

e Remove all but the suffix.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it.

Chapter 6: Command Line Editing 17

6 Command Line Editing

This text describes GNU’s command line editing interface.

6.1 Introduction to Line Editing

In this text a the following notation is used to describe keystrokes.

The text C-K is read as ‘Control-K’ and describes the character produced when the Control key

is depressed and the K key is struck.

The text M-K is read as ‘Meta-K’ and describes the character produced when the meta key (if

you have one) is depressed, and the K key is struck. If you do not have a meta key, the identical

keystroke can be generated by typing ESC first, and then typing K. Either process is known as

metafying the K key.

The text M-C-K is read as ‘Meta-Control-k’ and describes the character produced by metafying

C-K.

In addition, several keys have their own names. Specifically, DEL, ESC, LFD, SPC, RET, and TAB

all stand for themselves when seen in this text, or in an init file (see Section 6.3 [Readline Init File],

page 20, for more info).

6.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the first

word on the line is misspelled. The Readline library gives you a set of commands for manipulating

the text as you type it in, allowing you to just fix your typo, and not forcing you to retype the

majority of the line. Using these editing commands, you move the cursor to the place that needs

correction, and delete or insert the text of the corrections. Then, when you are satisfied with the

line, you simply press RETURN. You do not have to be at the end of the line to press RETURN; the

entire line is accepted regardless of the location of the cursor within the line.

18 Bash Features

6.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears where

the cursor was, and then the cursor moves one space to the right. If you mistype a character, you

can use DEL to back up, and delete the mistyped character.

Sometimes you may miss typing a character that you wanted to type, and not notice your error

until you have typed several other characters. In that case, you can type C-B to move the cursor

to the left, and then correct your mistake. Aftwerwards, you can move the cursor to the right with

C-F.

When you add text in the middle of a line, you will notice that characters to the right of the

cursor get ‘pushed over’ to make room for the text that you have inserted. Likewise, when you

delete text behind the cursor, characters to the right of the cursor get ‘pulled back’ to fill in the

blank space created by the removal of the text. A list of the basic bare essentials for editing the

text of an input line follows.

C-B Move back one character.

C-F Move forward one character.

DEL Delete the character to the left of the cursor.

C-D Delete the character underneath the cursor.

Printing characters

Insert itself into the line at the cursor.

C-_ Undo the last thing that you did. You can undo all the way back to an empty line.

6.2.2 Readline Movement Commands

The above table describes the most basic possible keystrokes that you need in order to do editing

of the input line. For your convenience, many other commands have been added in addition to C-B,

C-F, C-D, and DEL. Here are some commands for moving more rapidly about the line.

C-A Move to the start of the line.

C-E Move to the end of the line.

M-F Move forward a word.

M-B Move backward a word.

C-L Clear the screen, reprinting the current line at the top.

Chapter 6: Command Line Editing 19

Notice how C-F moves forward a character, while M-F moves forward a word. It is a loose

convention that control keystrokes operate on characters while meta keystrokes operate on words.

6.2.3 Readline Killing Commands

The act of cutting text means to delete the text from the line, and to save away the deleted

text for later use, just as if you had cut the text out of the line with a pair of scissors. There is a

Killing text means to delete the text from the line, but to save it away for later use, usually by

yanking it back into the line. If the description for a command says that it ‘kills’ text, then you

can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.

C-K Kill the text from the current cursor position to the end of the line.

M-D Kill from the cursor to the end of the current word, or if between words, to the end of

the next word.

M-DEL Kill fromthe cursor the start of the previous word, or if between words, to the start of

the previous word.

C-W Kill from the cursor to the previous whitespace. This is different than M-DEL because

the word boundaries differ.

And, here is how to yank the text back into the line. Yanking is

C-Y Yank the most recently killed text back into the buffer at the cursor.

M-Y Rotate the kill-ring, and yank the new top. You can only do this if the prior command

is C-Y or M-Y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive kills

save all of the killed text together, so that when you yank it back, you get it in one clean sweep.

The kill ring is not line specific; the text that you killed on a previously typed line is available to

be yanked back later, when you are typing another line.

6.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts as a

20 Bash Features

repeat count, other times it is the sign of the argument that is significant. If you pass a negative

argument to a command which normally acts in a forward direction, that command will act in a

backward direction. For example, to kill text back to the start of the line, you might type M-- C-K.

The general way to pass numeric arguments to a command is to type meta digits before the

command. If the first ‘digit’ you type is a minus sign (-), then the sign of the argument will

be negative. Once you have typed one meta digit to get the argument started, you can type

the remainder of the digits, and then the command. For example, to give the C-D command an

argument of 10, you could type M-1 0 C-D.

6.3 Readline Init File

Although the Readline library comes with a set of Emacs-like keybindings, it is possible that

you would like to use a different set of keybindings. You can customize programs that use Readline

by putting commands in an init file in your home directory. The name of this file is ‘~/.inputrc’.

When a program which uses the Readline library starts up, the ‘~/.inputrc’ file is read, and

the keybindings are set.

In addition, the C-x C-r command re-reads this init file, thus incorporating any changes that

you might have made to it.

6.3.1 Readline Init Syntax

There are only four constructs allowed in the ‘~/.inputrc’ file:

Variable Settings

You can change the state of a few variables in Readline. You do this by using the set

command within the init file. Here is how you would specify that you wish to use Vi

line editing commands:

set editing-mode vi

Right now, there are only a few variables which can be set; so few in fact, that we just

iterate them here:

editing-mode

The editing-mode variable controls which editing mode you are using.

By default, GNU Readline starts up in Emacs editing mode, where the

Chapter 6: Command Line Editing 21

keystrokes are most similar to Emacs. This variable can either be set to

emacs or vi.

horizontal-scroll-mode

This variable can either be set to On or Off. Setting it to On means that

the text of the lines that you edit will scroll horizontally on a single screen

line when they are larger than the width of the screen, instead of wrapping

onto a new screen line. By default, this variable is set to Off.

mark-modified-lines

This variable when set to On, says to display an asterisk (‘*’) at the starts

of history lines which have been modified. This variable is off by default.

prefer-visible-bell

If this variable is set to On it means to use a visible bell if one is available,

rather than simply ringing the terminal bell. By default, the value is Off.

Key Bindings

The syntax for controlling keybindings in the ‘~/.inputrc’ file is simple. First you

have to know the name of the command that you want to change. The following pages

contain tables of the command name, the default keybinding, and a short description

of what the command does.

Once you know the name of the command, simply place the name of the key you wish

to bind the command to, a colon, and then the name of the command on a line in the

‘~/.inputrc’ file. The name of the key can be expressed in different ways, depending

on which is most comfortable for you.

keyname: function-name or macro

keyname is the name of a key spelled out in English. For example:

Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: ">&output"

In the above example, ‘C-u’ is bound to the function universal-argument,

and ‘C-o’ is bound to run the macro expressed on the right hand side (that

is, to insert the text ‘>&output’ into the line).

"keyseq": function-name or macro

keyseq differs from keyname above in that strings denoting an entire key

sequence can be specified. Simply place the key sequence in double quotes.

GNU Emacs style key escapes can be used, as in the following example:

"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
"\e[11~": "Function Key 1"

In the above example, ‘C-u’ is bound to the function universal-argument

(just as it was in the first example), ‘C-x C-r’ is bound to the function re-

22 Bash Features

read-init-file, and ‘ESC [1 1 ~’ is bound to insert the text ‘Function

Key 1’.

6.3.1.1 Commands For Moving

beginning-of-line (C-a)

Move to the start of the current line.

end-of-line (C-e)

Move to the end of the line.

forward-char (C-f)

Move forward a character.

backward-char (C-b)

Move back a character.

forward-word (M-f)

Move forward to the end of the next word.

backward-word (M-b)

Move back to the start of this, or the previous, word.

clear-screen (C-l)

Clear the screen leaving the current line at the top of the screen.

6.3.1.2 Commands For Manipulating The History

accept-line (Newline, Return)

Accept the line regardless of where the cursor is. If this line is non-empty, add it to the

history list. If this line was a history line, then restore the history line to its original

state.

previous-history (C-p)

Move ‘up’ through the history list.

next-history (C-n)

Move ‘down’ through the history list.

beginning-of-history (M-<)

Move to the first line in the history.

end-of-history (M->)

Move to the end of the input history, i.e., the line you are entering!

Chapter 6: Command Line Editing 23

reverse-search-history (C-r)

Search backward starting at the current line and moving ‘up’ through the history as

necessary. This is an incremental search.

forward-search-history (C-s)

Search forward starting at the current line and moving ‘down’ through the the history

as neccessary.

6.3.1.3 Commands For Changing Text

delete-char (C-d)

Delete the character under the cursor. If the cursor is at the beginning of the line,

and there are no characters in the line, and the last character typed was not C-d, then

return EOF.

backward-delete-char (Rubout)

Delete the character behind the cursor. A numeric arg says to kill the characters instead

of deleting them.

quoted-insert (C-q, C-v)

Add the next character that you type to the line verbatim. This is how to insert things

like C-q for example.

tab-insert (M-TAB)

Insert a tab character.

self-insert (a, b, A, 1, !, ...)

Insert yourself.

transpose-chars (C-t)

Drag the character before point forward over the character at point. Point moves

forward as well. If point is at the end of the line, then transpose the two characters

before point. Negative args don’t work.

transpose-words (M-t)

Drag the word behind the cursor past the word in front of the cursor moving the cursor

over that word as well.

upcase-word (M-u)

Uppercase the current (or following) word. With a negative argument, do the previous

word, but do not move point.

downcase-word (M-l)

Lowercase the current (or following) word. With a negative argument, do the previous

word, but do not move point.

24 Bash Features

capitalize-word (M-c)

Uppercase the current (or following) word. With a negative argument, do the previous

word, but do not move point.

6.3.1.4 Killing And Yanking

kill-line (C-k)

Kill the text from the current cursor position to the end of the line.

backward-kill-line ()

Kill backward to the beginning of the line. This is normally unbound.

kill-word (M-d)

Kill from the cursor to the end of the current word, or if between words, to the end of

the next word.

backward-kill-word (M-DEL)

Kill the word behind the cursor.

unix-line-discard (C-u)

Do what C-u used to do in Unix line input. We save the killed text on the kill-ring,

though.

unix-word-rubout (C-w)

Do what C-w used to do in Unix line input. The killed text is saved on the kill-ring.

This is different than backward-kill-word because the word boundaries differ.

yank (C-y)

Yank the top of the kill ring into the buffer at point.

yank-pop (M-y)

Rotate the kill-ring, and yank the new top. You can only do this if the prior command

is yank or yank-pop.

6.3.1.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)

Add this digit to the argument already accumulating, or start a new argument. M–

starts a negative argument.

universal-argument ()

Do what C-u does in emacs. By default, this is not bound.

Chapter 6: Command Line Editing 25

6.3.1.6 Letting Readline Type For You

complete (TAB)

Attempt to do completion on the text before point. This is implementation defined.

Generally, if you are typing a filename argument, you can do filename completion; if

you are typing a command, you can do command completion, if you are typing in a

symbol to GDB, you can do symbol name completion, if you are typing in a variable

to Bash, you can do variable name completion...

possible-completions (M-?)

List the possible completions of the text before point.

6.3.1.7 Some Miscellaneous Commands

re-read-init-file (C-x C-r)

Read in the contents of your ‘~/.inputrc’ file, and incorporate any bindings found

there.

abort (C-g)

Ding! Stops things.

do-uppercase-version (M-a, M-b, ...)

Run the command that is bound to your uppercase brother.

prefix-meta (ESC)

Make the next character that you type be metafied. This is for people without a meta

key. Typing ‘ESC f’ is equivalent to typing ‘M-f’.

undo (C-_)

Incremental undo, separately remembered for each line.

revert-line (M-r)

Undo all changes made to this line. This is like typing the ‘undo’ command enough

times to get back to the beginning.

6.3.2 Readline Vi Mode

While the Readline library does not have a full set of Vi editing functions, it does contain enough

to allow simple editing of the line.

In order to switch interactively between Emacs and Vi editing modes, use the command M-C-j

(toggle-editing-mode).

26 Bash Features

When you enter a line in Vi mode, you are already placed in ‘insertion’ mode, as if you had

typed an ‘i’. Pressing ESC switches you into ‘edit’ mode, where you can edit the text of the line

with the standard Vi movement keys, move to previous history lines with ‘k’, and following lines

with ‘j’, and so forth.

Chapter 7: Feature Index by Concept 27

7 Feature Index by Concept

A
abort (C-g) .25

accept-line (Newline, Return) 22

B
backward-char (C-b) . 22

backward-delete-char (Rubout) 23

backward-kill-line () . 24

backward-kill-word (M-DEL) . 24

backward-word (M-b) . 22

beginning-of-history (M-<) . 22

beginning-of-line (C-a) . 22

builtin . 10

C
capitalize-word (M-c) . 23

case . 2

clear-screen (C-l) .22

command . 11

complete (TAB) . 25

D
declare . 10

delete-char (C-d) . 23

digit-argument (M-0, M-1, ... M--) 24

dirs . 3

do-uppercase-version (M-a, M-b, ...)25

downcase-word (M-l) . 23

E
enable . 11

end-of-history (M->) . 22

end-of-line (C-e) . 22

event designators . 15

expansion . 15

F
fc . 5

for .1

forward-char (C-f) .22

forward-search-history (C-s) . 23

forward-word (M-f) .22

H
hash . 11

help . 11

history . 4

I
if . 1

ignoreeof .4

interaction, readline . 17

K
kill-line (C-k) . 24

kill-word (M-d) . 24

L
local . 11

N
next-history (C-n) .22

P
popd . 3

possible-completions (M-?) . 25

prefix-meta (ESC) . 25

previous-history (C-p) . 22

pushd . 3

Q
quoted-insert (C-q, C-v) . 23

R
re-read-init-file (C-x C-r) .25

readonly .12

reverse-search-history (C-r) . 23

revert-line (M-r) . 25

28 Bash Features

S
self-insert (a, b, A, 1, !, ...)23

set .7

T
tab-insert (M-TAB) .23

transpose-chars (C-t) . 23

transpose-words (M-t) . 23

type . 5, 11

typeset . 5

U
ulimit . 12

undo (C-) . 25

universal-argument () . 24

unix-line-discard (C-u) . 24

unix-word-rubout (C-w) . 24

until . 1

upcase-word (M-u) . 23

W
while . 1

Y
yank (C-y) . 24

yank-pop (M-y) . 24

i

Table of Contents

1 Bourne Shell Style Features . 1

1.1 Looping Constructs . 1

1.2 Conditional Constructs .1

2 (T)C-Shell Style Features .3

3 Korn Shell Style Features . 5

4 Bash Specific Features . 7

4.1 Shell Command Line Options . 7

4.2 The Set Builtin . 7

4.3 Is This Shell Interactive? . 9

4.4 Controlling the Prompt . 9

4.5 Bash Startup Files . 10

4.6 Bash Builtin Commands . 10

4.7 Bash Variables .12

5 Using History Interactively . 15

5.1 History Interaction .15

5.1.1 Event Designators . 15

5.1.2 Word Designators .15

5.1.3 Modifiers . 16

6 Command Line Editing .17

6.1 Introduction to Line Editing . 17

6.2 Readline Interaction . 17

6.2.1 Readline Bare Essentials . 18

6.2.2 Readline Movement Commands . 18

6.2.3 Readline Killing Commands .19

6.2.4 Readline Arguments . 19

6.3 Readline Init File . 20

6.3.1 Readline Init Syntax . 20

6.3.1.1 Commands For Moving . 22

6.3.1.2 Commands For Manipulating The History 22

6.3.1.3 Commands For Changing Text23

6.3.1.4 Killing And Yanking .24

ii Bash Features

6.3.1.5 Specifying Numeric Arguments 24

6.3.1.6 Letting Readline Type For You 25

6.3.1.7 Some Miscellaneous Commands 25

6.3.2 Readline Vi Mode . 25

7 Feature Index by Concept .27

